
WBitöcx jgx&mT*

The Probability of Pure Literals

John W. Rosenthal, Department of Mathematics and Computer Science,

Ithaca College, Ithaca, NY 14850

E-Mail: rosentha@ithaca.edu

J. M. Plotkin, Department of Mathematics, Michigan State University,

East Lansing, MI 48824

E-Mail: plotkin@math.msu.edu

John Franco, Department of Computer Science, University of Cincinatti,

Cincinatti, OH 45221

E-Mail: franco@franco.csm.uc.edu

Address all correspondence to J.M. Plotkin at the above address/e-mail.

Abstract

We describe an error in earlier probabilistic analyses of the pure literal heuristic

as a procedure for solving k-SAT. All probabilistic analyses are in the constant

degree model in which a random instance C of k-SAT consists of m clauses selected

independently and uniformly (with replacement) from the set of all fc-clauses over

n variables. We provide a new analysis for k = 2. Specifically, we show with

probability approaching 1 as m goes to oo one can apply the pure literal rule

repeatedly to a random instance of 2-SAT until the number of clauses is "small"

provided n/m > A > 1. But if n/m < A < 1, with probability approaching 1 if

the pure literal rule is applied as much as possible, then at least m1'5 clauses will

remain.

Keywords: 2-SAT, constant degree model, Davis-Putnam Procedure, pure literal

(heuristic), probability of a pure literal

19970609 022
1

DTIC QUÄLET INSPECTED S

1 Introduction

The satisfiability problem for sets of propositional clauses is the primordial

NP-complete problem (See[14, p.38]). Also as shown in [14], the satisfiability

problem for sets of fc-clauses (k-SAT) is iVP-complete for k > 2. The lack of

polynomial time algorithms for iVP-complete problems has given rise to the

search for fast heuristic schemes for their solution which will be successful

"almost surely". Franco [10] and the rest of us [18] give probabilistic analyses

of the pure literal heuristic as a procedure for solving k-SAT. Unfortunately

a serious error vitiates the outcomes. We describe the error in §2. For 2-SAT

we provide a different analysis in §3 showing the efficiency of the pure literal

heuristic in the cases claimed by Franco. This analysis is based partly on the

Chvatal and Reed [7] and Goerdt [15] analysis of the probability that a set

of 2-clauses is satisfiable. In §4 we show the optimal nature of the result in

§3.

All of these analyses are in the constant degree model for formulae in

conjunctive normal form (CNF) having a sequence of m clauses each of

which is a ^-clause, that is, has a set of k literals selected from a set V of

n Boolean variables and their negations. In this model clauses are selected

independently from one another with the uniform distribution on the set of

all possible k-clauses, denoted Qk(V) or Qk{n). To allow changes in param-

eters Franco and Pauli [12] denote this distribution as f(m,n,k). We omit

k as it is clear. This model has been used in many studies of k-SAT includ-

ing Brown and Purdom [3], Purdom and Brown [19], Franco and Paull[12],

Franco [10], Franco, Plotkin, and Rosenthal [13], M-T Chao and Franco [5]

and [6], Chvätal and Reed [7], and Goerdt [15]. It has also been used in

the study of k-Exact SAT in Rosenthal, Speckenmeyer, and Kemp [22] and

Rosenthal [21]. The reader should be cautioned that among these papers

there is confusing variation in the symbols used for the number of variables,

the number of clauses, and the number of literals per clause.

The pure literal heuristic is based on the pure literal rule which is part

of the Davis-Putnam Procedure (DPP) [8], an algorithm for satisfiability

(SAT) and k-SAT. Franco and Pauli [12] provide a recent description. [12],

[10], [13], [5], [6], etc. study aspects of DPP using the constant degree model.

Goldberg [16], Goldberg, Purdom, and Brown [16], Purdom and Brown [20],

Bugrara, Pan, and Purdom [4], Franco [11], etc. study aspects of DPP for

SAT using another distribution, the constant density model. A lot of the

work in the constant density model involves the pure literal rule. Recently

Broder, Freize, and Upfal [2] used another model to study the pure literal

rule for 3-clauses. In this model there are also m A;-clauses, but the km

literals are chosen uniformly and independently from the set of 2n available

literals.

A pure literal for a formula in CNF is a literal / which occurs in at least

one clause, but whose negation does not occur in any clause. The pure literal

rule declares / to be true, and deletes all clauses containing /. The pure literal

heuristic PL keeps trying to apply the pure literal rule until the sequence of

remaining clauses is so small that the splitting rule (another one of DPP's

rules) will efficiently determine satisfiability. If the pure literal rule can not

be applied this often, the pure literal heuristic gives up. Franco [10] provides

a more formal description of PL.

In [10] Franco examines the performance of PL applied to random (ac-

cording to the constant degree model) formulae with m clauses from Qk(n)

where n = Am and A > 1. His intention is to show that asymptotically (in

m) almost always PL can be applied until only log2 m clauses remain. He

does not analyze PL directly, but rather analyzes a procedure PL' whose

probability of giving up is at least the probability PL gives up. In PL' if

a pure literal occurs in r > 1 clauses, then one reintroduces r - 1 random

fc-clauses built using the variables not yet assigned a truth value. For the

reader's convenience we paraphrase Franco's description of PL'.

In the following description A denotes the set of variables not yet assigned

a truth value, D denotes the sequence of remaining fc-clauses, and E denotes

the set of fc-clauses that are reintroduced. Initially A = V, D is the sequence

of A;-clauses from the original random formulae, and E = 0

Procedure PL'(D, A, h)

(1) while \D\ >hdo

(2) if there is no pure literal in D, then "give up"

(3) else begin

(4) choose a pure literal / in D;

(5) delete the variable of / from A;

(6) delete all clauses containing / from D;

(7) if r clauses were removed in line (6), select r — 1 clauses

independently and uniformly from Qk(A), and adjoin

these to both D and E.

end; (8) return "satisfiable" or "unsatisfiable" as determined

by the splitting rule applied to D — E;

end PL'

4

2 The Error

Lemma 1 of [10] is the calculation of the probability that PL' does not give

up on an /(m,n)-random instance (where n > m). It is claimed that after

the ith iteration of the while loop in PL' the sequence D is an f(m — i,n — i)-

random instance, i.e. that the clauses of D are independently and uniformly

selected from Qk{A). We show this is false. A similar error occurs in [17]

and is essentially a sophisticated version of Bertrand's paradox.

To show that the claim is false we must first clarify line (4) of PL'.

The choice of a pure literal in D may be made algorithmically or randomly

(viewing PL' as a randomized algorithm). In the random case for every

occurrence of line (4) one assigns probabilities (or "weights") to the possible

choices of pure literal. We call any such assignment a weighting scheme. For

example, we could assign each pure literal equal weight. The algorithmic

case can be viewed as a special instance of the random case in which we

use a weighting scheme that always assigns one pure literal weight 1 and the

others weight 0.

We show that for no weighting scheme does one retain independence

after the completion of one pass through the while loop of PL'. For ease of

exposition we do this for m = 4, n = 6, k = 3.

We represent a clause by listing its variables and beneath each variable

placing + or — to indicate a positive or negative occurrence of that variable.

Let A = {vi | 1 < i < 6} and ej € {+, -} for 1 < j < 3. For each se-

quence D consisting of four clauses from Qz{A), let WD{^\^2, ^Z) be the prob-

ability that in the first execution of the while loop on line (1) of PL'(D, A, h)

the pure literal chosen on line (4) was u4, u5, or ve and that the new D arising

at the end of line (7) is

vi v2 v3 ; ui v2 v3 ; * * *

+ + + ei e2 e3 * * *

where *'s indicate arbitrary entries.

Let <r(ei,e2,e3) = T,\D\=4WD{ei,e2,e3). The assumption that the result

of one pass through the while loop is an /(3,5)-random instance implies

cr(e1,e2,e3) is independent of the values of e!,e2,e3. Let us examine what

would cause an imbalance between <7+ = cr(+,+,+) and <r_ = cr(—,—,—).

We need only consider cases where v^v5, or v& is pure. If either or both

of the Vi,v2,v3-c\auses listed are obtained via E (on line (7)) then these

two ui,u2,ü3-clauses are obtained independently and so no imbalance could

occur. So we can restrict our attention to the remaining case where the two

ul5 u2, u3-clauses listed came from the original D and t>4, v5, or v6 is pure. We

call such a D a potential threatening contributor to cr+ or cr_, respectively.

a+ and <r_ have corresponding potential threatening contributors. The only

difference is that in such contributors to cr_ vi,v2, and v3 are not pure and

hence

Prob(pure chosen is in {^4,^5,^6}) = 1

whereas in such contributors to cr+, Vi,v2, and/or v3 may be pure. Thus

to guarantee that cr+ is as large as <7_ the weighting scheme when handling

potential threatening contributors to cr+ must give no weight to any pure

literal in {^1,^2,^3}- In particular if the original D is

vi v2 v3 ; vi v2 v3 ; v4 v5 v6 ; v4 v5 v6

+ + + + + + + + + + + +

6

then ui, t>2, and v^ must not be selected. Mutatis mutandi U4, i>5, and VQ must

not be selected. We have arrived at a contradiction.

It is worth noting that a similar argument shows that PL' never decreases

the probability of impurity. More precisely, let V be a set of n Boolean

variables, V a set of n — s Boolean variables (where s > 0), C a sequence of

m clauses selected independently and uniformly from Qk(V), C a sequence of

m — s clauses selected independently and uniformly from Qk(V')- Let t > 0.

Let E' be the event that after t complete passes through the while loop of

line (1) of PL'(C',V',h) there is a pure literal and let E be the event that

after s + t complete passes through the while loop of line (1) of PL'(C, V, h)

there is a pure literal. Then Prob(£)< Pvob(E').

3 Pure Literal Rule for 2-SAT

Using a different analysis we now show that the pure literal heuristic succeeds

when k = 2 provided the ratio of the number of variables over the number

of clauses is asymptotically greater than 1.

THEOREM 3.1

Let A > 1. Assume n > Am. Let C be a random sequence of m clauses from

Q2(n). Then

Prob(the pure literal rule may be applied to C until at most

log2(n) clauses remain)= 1 — o(l).

NOTES: n is a function of m.

Throughout §3 and §4 all asymptotic notations are asymptotic in m.

REMARK 3.2

The proof, especially the Configuration Lemma below, is based on the Chvätal-

Reed [7] proof that under the same hypotheses

Prob(C is satisfiable) = 1 — o(l).

More generally we show:

THEOREM 3.3

Same hypotheses as Theorem 3.1. If 1 = o(i), then

Prob(the pure literal rule may be applied to C until at most

t clauses remain) = 1 — o(l).

NOTE: t is a function of m.

PROOF. For notational simplicity we assume Am is an integer. Adding

clauses to C only makes it harder to reduce to t clauses. So we may as well

assume n = Am.

DEFINITION 3.4 (Pure literal block)

A pure literal block (PL block) is a sequence of clauses with no pure literals,

that is, every variable which occurs does so both positively and negatively.

To prove Theorem 3.3 it suffices to prove

Prob(there is a PL block of size at least t) = o(l).

It is well known that 2-SAT has fast algorithms (see e.g. Aspvall, Plass,

and Tarjan[l]). Underlying this result is the observation that a 2-clause

li V/2 may be viewed as the implications ->/i -> k and/or -i/2 -» h- Hence, a

sequence of 2-clauses may be viewed as a directed graph on the set of literals.

From this viewpoint a PL block B is a sequence of directed edges so that

every vertex of B is both the initial vertex of a directed edge and the terminal

vertex of a directed edge.

DEFINITION 3.5 (Cycle)

A cycle is a set /i -> I2J2 —>■ ^3, • • • ,h —>■ h of directed edges. Henceforth,

we write l\ -» I2 —>■•••-> la —> l\.

As it has only finitely many vertices any PL block includes a cycle. More

generally any vertex of a PL block is either on a cycle or lies between two

cycles.

PROPOSITION 3.6 (CONFIGURATION LEMMA)

Same hypotheses as Theorem 3.1.

a) Prob(C has two cycles connected by a path)= o(l).

b) Prob(C has two directly connected cycles)= o(l).

c) Prob(C has two overlapping cycles)= o(l).

PROOF.

a) Two cycles connected by a path consist of

li —>■ I2 —>•••—>• lPl —>■ hi the first cycle

mi —v 1712 —> • • • —^ mp2 -^
mi? the second cycle

and

h —>• n2 —>•••• —>• nP3 —>■ mi, the connecting path.

b) Two directly connected cycles consist of

li -)■ I2 -± ••- -> lPl —> h, one cycle

and

9

/i —>■ m2 -> • • • —> rnP2 -> l\, the other cycle,

c) Two overlapping cycles consist of

h -»• ^2 ->• —► ^ -» —> ipi+P2 -+ 'i>one cycle

and

/i ->■ m2 -» • • • -* mP3 -» /Pl, the nonoverlapping part of the other cycle.

The proofs for cases b) and c) are omitted as they are similar to the proof

for case a). The crucial point in each case is that the number of literals used

is one less than the number of clauses used.

For the moment fix pi, p2, and p3. In case a) one must choose p =

Pi + P2 + P3 clauses and p — 1 literals for these cycles and their connecting

path. The literals may be chosen in at most (2n)p_1 ways and the clauses may

be chosen in at most mp ways. Thus, the probability of this configuration

for fixed pi,p2, and p3 is at most

(2n)p-1mp _ _1_ 1_ / n

2n\P \n- 1

< —— as p < n)
- 2n\" V H '

So the probability of this configuration for some pi,p2, and p3 with p =
4 p2

p1 + p2 +p3 is at most —^-. Hence, the probability of this configuration for
Zu, A"

some px->p2-> and p3 is at most

By the ratio test £ T~ is finite and so the desired probability is
p>l Xp

°(h)=w-
10

The Configuration Lemma tells that by ignoring a o(l) piece of the sample

space of formulae, we may assume that no cycles in a formula are connected

to one another. Thus, the proof of Theorem 3.3 is completed by showing :

PROPOSITION 3.7

Same hypotheses as Theorem 3.1.

Prob(the sum of the lengths of all cycles in C is at least t and

no cycles of C are connected to one another) = o(l).

PROOF. Say the sum of the lengths is t' > t.

Say there are n; cycles of length t{ for i = 1,... ,s with total length t' =
s

As / —y I is not a clause, each t{ > 2.

One must choose t' clauses and t' literals for these cycles. The literals

may be chosen in at most (2n)' ways and the clauses may be chosen in at

most m* ways. But as any cycle of length t{ may be rotated in £,• ways, and

the rii cycles of length £j may be permuted in n2! ways, the number of ways
s

to choose literals was overcounted by a factor of 11 tin'rii\.

So the probability of n; cycles of length t{ for i = 1,..., s is at most

1 (2nY'mt' 4

n^'nl!(22Q) ntin«n,-!A*'

It is well known that in the uniform distribution on the set of permutations

on t' letters
1

El tin'ni\

is the probability that a permutation on t' letters has precisely n,- cycles of

length ti for i = 1,..., s.

11

So the probability that the sum of lengths of all cycles is t' is at most

4 4
Prob(a permutation on t' letters has no fixed point)^- < -rp-.

So the probability the sum of the lengths of all cycles of C is at least t and

no cycles of C are connected is at most

^o-
So, as 1 = o(i), this probability is o(l).

Given the phenomenal success of the pure literal heuristic under the hy-

potheses of Theorem 3.3 it is reasonable to ask if under the same hypotheses

the pure literal rule asymptotically almost always eliminates all clauses. This

is false as

PROPOSITION 3.8

If n ~ Am where A > 1, then the probability there is a cycle of length 2 is

asymptotically > 0.

PROOF. Let p2 be the probability there is no cycle of length 2. We show p2

f 1 is asymptotic to exp
4A2,

The main source of difficulty in computing this probability is that clauses

may occur more than once. So we write p2 as:

^2 Prob(there are t repetitions of clauses and no cycle of length 2)
t>o

Pick t' so that 1 = o(t') and t' = o{mll2).

CLAIM 3.9

Prob(there are at least t' repetitions) = o(l).

12

PROOF OF CLAIM 3.9. Say we get exactly t repetitions as we list the m

clauses. Say these occur as the i", i^d, •••,if clauses where ix < i2 < ... < it-

Then there are ii — 1 choices for the first repetition, i2 — 2 choices for the

second repetition,..., and it — t choices for the t repetition. And there are

at most (2N)m~t choices for the other m — t clauses (where N = n(n — 1)).

Thus, the probability of exactly t repetitions is at most '" where
(ziv)

st,m= £ (n - l)(*2 - 2) - - - (i4 - *)-
l<n<«2<---<«t<m

By induction we have:

LEMMA 3.10

(m - t)2t m2t

^ Sttm 5:
2H\ ~ ' ~ 2HI

1 fm2*
So the probability of exactly t repetitions is at most — I ——: . So the

probability of at least t' repetitions is at most YL ~r I TT7) ■> which is o(l) as

l = o(t').

Thus, p2 is asymptotically

E Prob(there are t repetitions of clauses and no cycle of length 2).
0<t<t'

As no cycle of length 2 is produced as we list the m clauses if and only if each

clause not repeating a previous clause avoids the converse of each previous

clause, a similar argument shows

AH
Prob(there are t repetitions of clauses and no 2 cycle) = st<r 2tNm(N-(m-t))l

m2t

By Lemma 3.10 as t' = o{tll2), sttm is uniformly asymptotic to -— for t < t'.

13

Thus, p2 is asymptotic to

v m2tNl
0~t,22W»*!(JV-(m-*))!'

x2

By Stirling's formula and ln(l - x) = -x - —- + 0(x3), this is asymptotic to

i / 9 \ * / 2 \ 1 / 77T \ / mM
Eiib ex? *' UiV / V 2JV

By the power series expansion of exp(a;), this is asymptotic to

exp Uv exp Niv,
which is asymptotic to exp

4A2

Proposition 3.8 is in striking contrast to Broder, Frieze, and Upfal's [2]

results for the pure literal rule for 3-clauses. They show that in their model
TYl

with asymptotically 1 probability there is no pure literal block provided —

is sufficiently small (< 1.63).

Proposition 3.8 and Erdös and Renyi's [9] results on the occurrences of

cycles in random graphs suggest the following conjectures, assuming Aim <

n < X2m where the A;'s are constants > 1.

CONJECTURE 3.11

For any fixed t the asymptotic probability there is a PL block of size t is

strictly between 0 and 1.

CONJECTURE 3.12

The asymptotic probability there is a PL block of some size is strictly between

0 and 1. (By the Configuration Lemma, Conjecture 3.12 is equivalent to: The

asymptotic probability there is a cycle of some length is strictly between 0

and 1.)

14

4 Optimality of Theorem 3.1

We show Theorem 3.1 is near optimal by showing if n = Am where 0 < A < 1,

then with asymptotic probability 1 there is a PL block of size rrf for some

e > 0. This follows immediately from the proof in Chvätal and Reed [7]

that for such A, Prob(C is satisfiable)= o(l). They use the second moment

method to show Prob(C has a "snake" of size me)= 1 — o(l) for any e < -.
o

It is trivial to observe a snake is a PL block.

A larger e with a simpler proof may be obtained by using cycles instead

of snakes.

THEOREM 4.1

Let 0 < A < 1. Assume n < Am. Let s = o(n1/'4). Let C be a random

sequence of m clauses from Q2(n). Then

Prob(the pure literal rule may be applied to C until fewer than

s clauses remain) = o(l).

NOTE: s is a function of m. It suffices to prove this theorem for 1 = o(s).

PROOF. As in Theorem 3.3 we may as well assume that Am is an integer

and n = Am.

DEFINITION 4.2 (s-cycle)

An s-cycle is a cycle lx —»• l2 -> •••—>• ls —>■ h in which li,...,ls have distinct

variables.

We show Prob(C has an s-cycle)= 1 — o(l).

For any s-cycle A let

XA= <
1 if each clause of A occurs exactly once in each C

0 otherwise

15

Let x = E{XA I A is an 5-cycle}. We show with probability 1 - o(l) some

5-cycle occurs by showing Prob(x > 0)= 1 - o(l). This is accomplished by

the second moment method. That is, we show

E(X
2) = E(Xni + o(l)).

Then by Chebyshev's inequality,

Probflx - E(X)\ > E(X)) < E{X2)
E(xyX)2 = °^

and so Prob(x = 0)= o(l).

As in [7],

E(XA) = [^) (1 + o(l)) uniformly in A.

There are [)5!25 = (2n)s(l + o(l)) ways to choose the vertices of an

5-cycle. So

E(X)=(^)S(l + o(l)).

Also if A and B are s-cycles sharing exactly i edges, then

/ m \ 2s_i

E{XAXB) = (^J (1 + o(l)) uniformly in A, 5, and i.

Thus

/2n2V
£(XAXB) = (—) E{XA)E{XB){1 + o(l)) uniformly in A, £, and i.

Let pi(n) (usually written pi) be the probability that a random 5-cycle B

shares i edges with a fixed 5-cycle A.

So

E(x2) = ±Pi(2-f)'E(x2)(l + o(l)).

16

The main work involves obtaining estimates of the p{. As there are

(2n)s(l + o(l)) s-cycles,

number of s-cycles B such that A and B share i edges
Pi = (2n)'(l + o(l)) •

Let AC\ B denote the edges in both A and B. Let k be the number of

connected components of A D B. Let N(i,k) be the number of s-cycles B

such that Aflß has i edges and & components.

So for i > 0
Ek>iN{i,k)

Pi -
(2n)-(l + o(l))"

For 0 < i < s, AT(i, fc) may be overestimated by the product of

i) the number of ways of placing in A the k components of A D B

ii) the number of ways of placing in B the k components of A 0 B

iii) the number of ways of placing in B the edges for each component of

Af)B

and

iv) the number of ways of assigning literals to the vertices in B, but not

inAnß.

i) and ii) may be overestimated as follows: Mark the beginning of each

component with a + and the end with a —. So we must choose positions for
(s \ s2k

the 2k markers giving at most I < . .. choices.

iii) is the number of ways of permuting same size components of A D B

in B. This is largest when all the components are the same size and, hence,

is at most k\.

17

As i < s, A n B has i + k vertices and hence B has s - (i + A;) vertices

not in An B. So iv) is at most (2n)s^i+k\ Thus,

„2fc \ 2 ^kO,n)s

i+k ^40mnrli*k,-wß
So

i Ah 1 4 1

»S^E (^(1 +0(1» = ^i-_z(l+o(l)).
2n

As 5 = ofr1'4)

<r
(2n)8' 2n

1 S4

Pi < -———(1 + o(l)) uniformly in i for 0 < i < s.

If i = 5, the only choice for £? is which vertex of A is if.

So

^(2^1 + °W-
So

So

So

t«*UF
+
££(SF d+o(i))MD.

po = 1 - 0(1).

£(x2) - £(x)2 = &W f—)lE(x)2(i + 0(1))-
»=i \ m /

By the above estimates of pi

E{X2) ~ E{Xf < ^ £ (£)WU + -(I)) + s (£f £(x)2(l + o(l)).
1 = 1

But —Y (-Y = o(l) as - = A < 1 and s = o{n^4) ; and 5 (-Y =
2n r-f \m/ m v"" »=i

o(l) as — = A < 1 and 1 = o(s)
m

18

QUESTION 4.3

How much larger of a pure literal block occurs asymptotically almost always

for n = Xm where 0 < A < 1?

5 Topics for further study

For 2-clauses we have seen there is an abrupt transition in the performance

of the pure literal heuristic. It occurs for n = Xm as A switches from < 1

to > 1. It is striking that this is the same A at which occurs the abrupt

transition in 2-satisfiability shown by Chvätal and Reed in [7] and Goerdt in

[15]. Is there a comparable transition in the performance of the pure literal

heuristic for fc-clauses for k > 3 ? First one should find an a (depending on

k) such that for n > am, asymptotically there are almost never pure literal

blocks of size at least log(m). And one should find a ß (depending on k) such

that for n < ßm, asymptotically there are almost always pure literal blocks

of size rrf for some e > 0. Next one should determine if as for k = 2, the

inf of the possible a's = the sup of the possible /3's. We are confident that

unlike for 2-clauses such a transition would be larger than the conjectured

transition for satisfiability.

19

References

[1] B. Aspvall, M.F. Plass, and R.E. Tarjan. A Linear-time algorithm for

Testing the Truth of Certain Quantified Boolean Formulas. Information

Processing Letters, 8, 121-123, 1979.

[2] A.Z. Broder, A.M. Frieze, and E. Upfal. On the satisfiability and max-

imum satisfiability of random 3-CNF formulas. In Proc. 4th Annual ACM-

SIAM Symposium on Discrete Algorithms, pp.322-330, ACM, New York

1993.

[3] C.A. Brown and P.W. Purdom. An Average Time Analysis of Backtrack-

ing. SIAM J. Computing, 10, 583-593, 1981.

[4] K.M. Bugrara, Y. Pan, and P.W. Purdom. Exponential Average Time

for the Pure Literal Rule. SIAM J. Computing, 18, 409-418, 1989

[5] M-T Chao and J. Franco, Probabilistic Analysis of Two Heuristics for the

3-Satisfiability Problem. SIAM J. Computing, 15, 1106-1118, 1986.

[6] M-T Chao and J. Franco. Probabilistic Analysis of a Generalization of

the Unit Clause Literal Selection Heuristic for the k-Satisfiability Problem.

Information Sciences, 51, 289-314, 1990.

[7] V. Chvätal and B. Reed. Mick gets Some (The Odds are on his Side).

In Proc. 33rd Annual Symposium on the Foundation of Computer Science,

IEEE, pp. 620-627, 1992.

[8] M. Davis and H. Putnam. A Computing Procedure for Quantification

Theory. Journal of the Association for Computing Machinery, 7, 201-215,

1960.

20

[9] P. Erdös and A. Renyi. On the Evolution of Random Graphs. Magyar

Tud. Akad. Mat. Kutato Int. Közl., 5, 17-61, 1960.

[10] J. Franco. Probabilistic Analysis of the Pure Literal Heuristic for the

Satisfiability Problem. In Annals of Operations Research I, pp. 273-289,

1984.

[11] J. Franco. Elimination of Infrequent Variables Improves Average Case

Performance of Satisfiability Algorithms. SIAM J. Computing, 20, 1119-

1127, 1991.

[12] J. Franco and M. Pauli. Probabilistic Analysis of the Davis Putnam Pro-

cedure for Solving the Satisfiability Problem. Discrete Applied Mathematics,

5, 77-87, 1983.

[13] J. Franco, J.M. Plotkin, and J.W. Rosenthal. Correction to Probabilis-

tic Analysis of the Davis Putnam Procedure for Solving the Satisfiability

Problem. Discrete Applied Mathematics, 17, 295-299, 1987.

[14] M. Garey and D. Johnson. Computers and Intractability, A Guide to

the Theory of NP-Completeness. W.H. Freeman, San Francisco, 1979.

[15] A. Goerdt. A threshold for unsatisfiability. In Mathematical foundations

of computer science 1992. Vol. 692 Lecture Notes In Computer Science, pp.

264-274. Springer, Berlin, 1992.

[16] A. Goldberg. Average Case Complexity of the Satisfiability Problem. In

Proc. 4th Workshop on Automated Deduction, pp. 1-6, Austin Texas, 1979.

[17] A. Goldberg, P. Purdom, and C. Brown. Average Time Analysis of

Simplified Davis- Putnam Procedure. Information Processing Letters, 15,

72-75, 1982.

21

[18] J.M. Plotkin and J.W. Rosenthal. Probabilistic Analysis of the Pure

Literal for the Satisfiability Problem. Abstracts of the AMS, 6, Number 3,

p. 267, 1985.

[19] P.W. Purdom and C.A. Brown. An Analysis of Backtracking with Search

Rearrangement. SIAM J. Computing, 12, 717-733, 1983.

[20] P.W. Purdom and C.A. Brown. The Pure Literal Rule and Polynomial

Average Time. SIAM J. Computing, 14, 943-953, 1985.

[21] J.W. Rosenthal. Fine Transitions in the Size of a Search Tree for Exact

Satisfiers, in preparation.

[22] J.W. Rosenthal, E. Speckenmeyer, and R. Kemp. Exact Satisfiability: A

Natural Extension of Set Partition and its Average Case Behavior. In Annals

of Math, and Art. IntelL, 6, 185-200, 1992.

22

